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The problem of transient natural convection in a cavity of aspect ratio A < 1 driven 
by internal buoyancy sources and sinks distributed linearly in the horizontal and 
uniformly in the vertical is considered. Scaling analysis is used to show that a 
number of possible transient flow regions are possible, collapsing ultimately onto one 
of conductive, transitional, or convective steady-state flow regimes. A number of 
numerical solutions are obtained, and their relationships to the scaling analysis are 
discussed. 

1. Introduction 
The transport of heat or mass by natural convection is a process that finds frequent 
application in physical systems, and accordingly has received considerable attention 
in the literature. I n  particular, the case of a two-dimensional rectangular cavity with 
differentially heated endwalls and insulated horizontal boundaries is a particular case 
that has been studied for several decades. 

A class of problem that has received far less attention is that of the motions 
generated by internal buoyancy fluxes. This class is fundamentally different to  the 
former problem in that the generation mechanism is, a t  least initially, distributed 
through the fluid, rather than being concentrated a t  the boundaries. For the most 
part, results in this area have been confined to flows in long vertical ducts (e.g. 
Turcotte, Spence & Bau 1982) or to a modified form of the Bernard problem (e.g. 
Tritton & Zarraga 1967; Roberts 1967; Thirlby 1970; Kulacki & Goldstein 1972; 
Kikuchi, Kawasaki & Shioyama 1982). Bergholz (1980) considered the case of a closed 
cavity with a uniform volumetric heating rate, with the flow being driven by cooling 
on the sidewalls. 

The motivation for some of the recent studies in low-aspect-ratio, differentially 
heated cavities has been, a t  least in part, the existence of certain types of geophysical 
flows (Cormack, Leal & Imberger 1974; Patterson & Imberger 1980), with the 
differentially heated endwalls corresponding to  localized sources and sinks of 
buoyancy. However, in many cases, a distribution of sources and sinks of buoyancy 
would provide a bettrr-idealized model of the geophysical situation. Consider, for 
example, a water body subjected to non-uniform surface cooling due perhaps to  
a non-uniform wind field. For sufficiently shallow water, the cooling effect may be 
distributed over the depth, and corresponds to a distribution of buoyancy sinks. The 
resultant horizontal temperature gradient drives a convective motion which 
contributes to the horizontal mixing processes; the time and velocity scales of the 
convective transport in comparison with those of other processes (e.g. vertical mixing, 
wind-driven circulation) are required to assess this contribution. An idealized model 



136 J .  C. Patterson 

in this case is then a rectangular cavity containing a distribution of sources and sinks 
varying horizontally, but not vertically or in time. With insulated boundaries and 
no vertical variation in source strength, the model becomes a study of the horizontal 
heat-transfer processes due to the gradient in source strength, in contrast to 
the modified Bernard problems, which are studies of the vertical heat-transfer 
mechanism. 

Many other distributions could find application in geophysical situations, or 
perhaps in chemically reacting fluids or heat exchangers, to name two examples. The 
point of this paper is not, however, directed at the applications, but rather towards 
an understanding of the processes involved in the convective motions generated by 
internal, rather than external, buoyancy sources. 

I n  the following, the case of a rectangular two-dimensional cavity of small aspect 
ratio A containing a fluid of Prandtl number B > 1 with a distribution of sources of 
varying strength is examined. A scaling analysis is used to obtain some insight into 
the transient behaviour and the development to steady state for a particular, simple 
source distribution. With the properties of the distribution embodied in the definition 
of a Grashof number Gr, i t  is possible to determine a broad classification of flow 
types, depending on the relative values of Gr, A and B. The broad classification yields 
conductive, convective, and transitional regimes, each regime containing a number 
of subregimes characterized by different approaches to steady state and different 
steady-state flow and temperature fields. A number of numerical solutions for 
particular values of Gr, A and B are obtained with the intention of traversing the 
principal regimes. The results of the numerical analysis are discussed in the context 
of the preceding scaling analysis. 

2. Formulation and scaling analysis 
Under consideration is a closed rectangular two-dimensional cavity of length L and 

half-height h (aspect ratio A = h /L)  with rigid, non-slip, thermally insulated 
boundaries (figure 1). The cavity contains a Newtonian fluid initially at rest and a t  
temperature To. At time t = 0, a continuous distribution of sources and sinks is 
enabled and maintained thereafter. The usual Boussinesq equations describe the 
subsequent flow and temperature fields : 

at +u-+v- = --- ap+vv2u, 
au - au au 

ax ay poax 
av av av 1 ap 
at ax ay PoaY -+u-+v- = ---+vV2v+ga(T-To), 

au av 
ax ay -+- = 0, 

aT i3T i3T 
-+u -+ v - = KV'T + Q ( x ,  ?j, t ) ,  
at ax ay 

(3) 

(4) 

where u and v are the horizontal and vertical components of velocity, T the tem- 
perature, p the pressure (incorporating the hydrostatic pressure), g the acceleration 
due to gravity, and v ,  po, a and K are the kinematic viscosity, density, coefficient of 
thermal expansion, and thermal diffusivity of the fluid a t  temperature T,. The source 
term Q(x, y, t )  corresponds to  the rate of temperature increase specified a t  position 
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t 
u = u  = 0, T =  To ( t  = 0 )  

Q = Q(x.y ,r)  ( t  >/ 0) 

FIGURE 1. The rectangular-cavity notation, boundary and initial conditions. 

(x, y) a t  time t ,  and in this paper is given the simple form 

Q ( x , y . t )  = 2 Q o h ( z - i L ) ,  

where Q, is a constant with units "C m+ s-l. This form corresponds to a linear 
horizontal distribution of temperature variation, uniform over the height and in time. 
The initial and boundary conditions applicable are shown in figure 1. 

A scale analysis is now applied to the set (1)-(4) to determine first the appropriate 
time and velocity scales for the initial core motion, secondly the interaction of the 
vertical boundaries with the core flow, and thirdly the overall development of the 
flow to steady state. 

2.1. The core motion 
The motion in the core is, a t  least initially, driven internally, with the boundaries 
being regions of adjustment of the temperature and velocity fields ; the appropriate 
horizontal lengthscale is then L,  and the vertical scale h. 

An examination of the relative magnitudes of the terms of the energy equation (4) 
yields an initial balance between the unsteady term and the source, provided that 
t < t ,  and t < t,, where, for the current velocity scale u, 

L I12 
t ,  - - 7 k - -  

U K 

are the respective timescales for convection and horizontal conduction to dominate 
the unsteady term. This balance yields a scale for the growth of the temperature 
difference across the cavity 

AT - Qo hLt .  (6) 

The effect of the horizontal temperature gradient is to establish a pressure field which 
drives a circulation; a balance between the pressure gradient and buoyancy terms 
in ( 2 )  yields a scale for the horizontal pressure gradient 

which, when applied in (l),  gives a horizontal velocity scale 

Qr v3t2 
u--  h2L3 ' 
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provided that t < t,, t < t , ,  where 

h2 L 
t ,  - - 1 t1-- 

V U 

are the respective timescales for the viscous and 

(9) 

advection terms to become 
important. I n  (8) the effective Grashof number Gr has been introduced: 

guQo h4L3 
v3 

Gr= 

This definition of Gr is consistent with the usual form if the timescale in (6) is taken 
as L 2 / v .  

The scale (8) holds for t < t,, t,, t ,  and t , ;  for CT = V / K  > 1 ,  t ,  < t,, and t ,  - t , .  The 
relative ordering oft,, t ,  and t ,  then determines the subsequent flow description. Using 
(S), t , / t ,  - (GrA4)-i, and the value of Gr relative to A-4 then determines the first 
flow transition. 

Consider the case Gr < A-4, for which t ,  < t , .  Since t ,  - t , ,  (8) holds until t N t,, 
when ( 1 ) becomes a viscous-pressure-gradient balance, yielding 

Gr v2t 
UN--- -  L3 . 

This scale holds if the original energy balance remains unchanged ( t  < t C , t K ) ,  and 
advection remains unimportant ( t  < t , ) ,  where t ,  is now obtained from ( 5 ) ,  and t ,  from 
a balance between the advection and viscous terms, in both cases using (10) as the 
velocity scale. For Gr < A-4, t , / t ,  < 1 and the energy balance must switch before the 
momentum balance. However, from (10) 

(11) 
L2 

Gri v ’ t ,  - - 
and t c / t ,  - Gr-4 C T - ~ .  Two cases are therefore possible, depending on the relative 
values of Gr and C T - ~ .  For Gr < u - ~ ,  t ,  < t,, implying that horizontal conduction 
balances the heat input before convection acts. This suggests that  Gr < C T - ~  is a purely 
conductive regime, with the resulting horizontal gradient driving a weak circulation 
with a velocity scale 

U -  Grcr-. (12) 
V 

L 

If, however, Gr > C T - ~ ,  t ,  < t,, and convection enters the energy balance a t  t , ,  
yielding a temperature difference 

The resulting viscous-pressure balance in ( 1 )  gives 

Gr v2t 
?AN- - - -  

L3 ’ 

and steady state has been achieved, with t ,  being an estimate for the steady-state 
time. 

Both horizontal conduction and convection have small influence on the change in 
temperature for times less than t ,  of t , ;  however, they must provide the heat transport 
necessary for the system to approach steady state. For small time (and low velocities), 
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conduction is the transfer mechanism, and remains so if Gr < aP2. If Gr > how- 
ever, convection must, a t  some time t,,, become the dominant transfer mechanism, 
where the scale for t,, will depend on one of the velocity scales (8) or (10). Using these 
scales i t  may be shown that 

This yields a further division in the flow description at  Gr - U - ~ A - ~ ;  the division, 
however, determines only the time a t  which convection becomes important as the 
horizontal transfer mechanism. 

Given that convection begins to act a t  time t,,, an increasing tendency for the 
isotherms to become horizontal will become evident. Horizontal isotherms imply a 
vertical conductive heat transport, which, if it exceeds the horizontal convective 
transport, will destroy the convective effect. Since the vertical transport is 
O ( K A T / h 2 ) ,  these two effects balance a t  t,,, where from (8) and (lo),  

--- L 4 K  - 1 <a<-) 1 
Grv2h2 (a2A4 aA4 ’ 

where two further flow divisions have been obtained, and, for Gr < r-2A-4,  horizontal 
convection is unable to exceed the draining effect of vertical conduction. Thus this 
latter division, Gr - C - ~ A - ~ ,  gives a lower bound for which convection may be 
evident. 

A similar scaling analysis may be applied for the case Gr > A-4. I n  this case the 
first change in flow character occurs a t  t - t,; since t ,  - t ,  in this regime, t ,  also 
corresponds to steady state. From (8) and (9) 

For t < t, the velocity scale is given by (8) ;  for t > t ,  both thermal and momentum 
balances change to give 

The secondary timescales t,, and t,, may also be obtained in the same way, giving 

with no further divisions in flow characteristics. 
I n  summary, the time and velocity scales in the core depend on the values of Gr 

relative to AP4, a-2A-4 and aP2, with secondary divisions at Gr - a-lAP4,  a- lAP2.  
Following consideration of the vertical boundary region, these and other scales will 
be summarized to give an overall picture of the evolution to steady state. 
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X L +L 
FIQCRE 2. An illustration of the adjustments to the temperature and vertical velocity profiles near 
the wall a t  the hot end of the cavity. The solid lines are temperature and the broken lines velocity 
a t  t < t,  (heavy) and a t  steady state (light). 

2.2. Adjustments at the vertical boundaries 
As as result of the symmetry of the problem posed, it suffices to consider only the 
adjustments a t  t,he wall of the heated end of the cavity. The temperature adjustment 
near this wall occurs over a lengthscale S, - dti. The net rate of heat input to this 
region of adjustment is O(Q,hLhS,), and the rate of conduction away is then 
O ( K A T ~ / L ) ;  this is less than the input for t < t,. 

The wall temperature therefore continues to grow until convection becomes 
important as a core heat-transfer mechanism at t - tcv. For t > tcv, increasing 
convection in the core results in a reduction in the rate of growth of the horizontal 
temperature gradient. Near the vertical wall, however, the no-slip condition requires 
that the core velocity falls away to zero in a region a,, determined by an advection- 
diffusion of vorticity balance, u2/h - uv/S;. The velocity reduction results in a 
reduction in vertical convection of heat away; the region of reduced convection is 
also the region of maximum heat input because of the form of the source distribution. 
Since convection in the core has not yet balanced the core heat input, reduced 
convection in the adjustment region cannot balance the maximum heat input, and 
conduction away through the core is insufficient to  remove the excess heat. The result 
is a continuing increase in temperature at the wall, a t  a faster rate than the increase 
in the core. This increasing temperature must adjust over S, to meet the condition 
aT/ax = 0;  since 6, < S,, a steep temperature gradient is set up a t  S,, which in turn 
drives an additional flow in an attempt to provide sufficient convection for thermal 
equilibrium to be achieved near the wall. 

The situation is illustrated conceptually in figure 2. The heavy solid and broken 
lines represent the temperature and vertical velocity profiles as functions of horizontal 
position at some time t < t,, and the light lines the profiles when equilibrium is 
achieved. The resulting temperature gradient is sufficient to drive additional con- 
vection to balance the heat input over S T .  

At steady state, conduction over S, must balance the heat input, 

KATbiIST QohLST, 

where ATb, is the local temperature increase and the excess vertical velocity vbl is 
obtained from a balance between the viscous and buoyancy forces (Patterson & 
Imberger 1980), vvb1/6$ - gaATbl. Finally, the excess heat must be convected away 
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by vbl so that vbl ATbl/h - &,, hLS,. The result of these three balances is 

and the timescale for S, to reach the value (20) is given by 

hjL$ 
Gri & ’ tbl - ~ 

which represents the time for thermal equilibrium near the wall to be achieved. 
The scales (20), (21) are based on the assumption that S,, ST < h. For Gr < AP4 

i t  is easy to show that S, > h and the analysis is not valid. The interpretation here 
is that the adjustment occurs over the scale of the cavity and the core motion is large 
compared with the boundary adjustment. 

On the other hand, if Gr > A-4, v - hbG& L-j from (8) and (17)  and 

where now 8, < h. In  this case, the vertical layers are distinct, and the boundary 
influence will be evident. 

The motion cannot achieve steady state until the boundary adjustment has 
stabilized at time tbl. For Gr > A-4, t,, > t,, and the estimate of the steady-state time 
is extended to tbl. For Gr < AP4 the effect is dominated by the core motion and will 
be only weakly, if a t  all, present. I n  this case, t,, is an upper estimate of the steady- 
state time for those Gr-values for which t,, > t,; that is, for Or > U - ~ A - ~ .  For 
Gr < 

A discussion of the interaction between the boundary and core flows is also 
necessary. This interaction is extremely complex and a detailed scaling analysis is 
not possible. A qualitative picture of the interaction may, however, be built up. At 
time t ,  (with Gr > A-4) the core flow has achieved thermal equilibrium; however, since 
t ,  < t,,, the boundary flow is still accelerating, with a velocity higher than the core. 
Diffusion of vertical momentum from the boundary region into the core will increase 
the vertical core velocity beyond its thermal-equilibrium value, with the result that  
the convective heat transport will now exceed the heat input to the core. The core 
temperature near the boundary will be reduced, as will the horizontal temperature 
gradient in the core. On the other hand, the temperature gradient a t  the edge of the 
boundary region is increased. Consequently, the forcing for the core motion is reduced 
and the forcing for the boundary motion is increased. 

The result of these adjustments is then a reduction in the horizontal core temper- 
ature gradient a t  the expense of an increased wall gradient. As the boundary velocity 
increases, an increasing section of the core is driven by diffusion of momentum from 
the boundary, further decreasing the core gradient. Should the core gradient become 
negative, the core forcing becomes negative, increasing the shear between core and 
boundary, and tending to reduce the boundary motion. This two-way interaction 
provides a mechanism for the generation of internal waves, which represent the 
adjustment of the flow and temperature fields in the core region influenced by 
diffusion of momentum from the boundary region into the core. At steady state, this 
region of the core will be driven entirely by this diffusion of momentum, the flow being 
just sufficient to balance the heat input, and the isotherms will be horizontal. For 
large Grashof numbers, the region will encompass the entire core. Thus, in the 

t, > t,,, and t ,  remains as the steady-state estimate. 



142 J .  C. Patterson 

(JJ-lu- 1A-4 

C' -1 -2 rr 2A 

Comments 

Regime: u4AP4 < Qr 
Pure-conduction phase complete as convection becomes 

important. Vertical conduction dismantles vertical structure 
Core velocity scale given by ( l l ) ,  boundary scales by (32). 

Convection dominates heat transfer, and significant deviation 
from pure conduction begins. 

Thermal balance in the core, but boundary adjustment 
continues. Sharp gradients near the vertical walls, and Nu 
approaches a maximum as internal-wave activity begins. 

Boundary adjustment complete. Internal-wave activity 
continues. 

Steady state as internal wave activity decays. 

Regime: A-4 < Gr < g4A-4 

Flow development as above. 

Internal-wave activity decayed, boundary adjustment 
continues, and smooth approach to steady state begins. 

Steady state as boundary adjustments complete. 

Regime: u - ' A - ~  < Gr < A-4 
Flow development as above. 

Core flow scaling becomes viscous (19). 

Thermal balance in the core, but boundary adjustment 
continues. Scale of boundary adjustments is O(h) and effect is 
weak. Weak internal waves may be present, heavily damped. 

Boundary-layer adjustment complete. Steady state achieved by 
steady approach. t& is an upper estimate of steady-state time. 

Regime: ( T - ~ A - ~  < Gr < u - ' A - ~  
Flow development as above. 

Flow switches to viscous domination (19). Heat transfer by 
augmented conduction. 

Convection dominates vertical conduction, and significant 
deviation from the pure conduction solution begins. 

Thermal balance in the core. Weak-internal-wave activity and 
evidence of boundary adjustment. 

Boundary-layer adjustment complete 

Regime: U - ' A - ~  < Gr < u-2A-4 
Flow development as in previous case. 

Steady state by augmented conduction. No boundary effects. 
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Parameter, 
equation Comments 

t& (15) Augmented conduction begins. 
Regime: u - ~  < C2r < U - ' A - ~  

t: ( 1  1) 
4, 

t: (5) 

Steady state by augmented conduction. 

Regime : Gr < U -  

TABLE 1 

t: (5) Pure conduction. 

convective limit a t  steady state the entire flow is driven by the boundary flow, as 
in the differentially heated endwall case, although completely different mechanisms 
are responsible and the scales are different. 

2.3. Internal-wave activity 
The possibility of internal waves generated by the mechanism described above 
implies a delayed timescale for the achievement of steady state. An upper estimate 
for the decay time of these waves is t ,  - h2/u. The internal waves will have frequency 
O(w), where, from Fischer et a2. (1979), 

i v  - N A  ( A <  I) ,  (1+A-2): 
0)- 

with the Brunt-Vaisala frequency, based on the mean vertical temperature gradient 
a t  t,, given by N - Griv/hzLi, for Gr > AF4. The period of oscillation is then O(t,), 

and, since t ,  < t ,  for Gr > A-4, the wave activity will be present and steady state will 
be achieved in a decaying oscillatory fashion. The previous estimate of steady-state 
time for Gr > AP4 was tbl; the two estimates balance a t  Gr - u ~ A - ~ .  Thus for 
Gr < a4Aw4, t,, > t,, and the waves have decayed before steady state is achieved. On 
the other hand, if Gr > a4AP4, the vertical adjustment region is stabilized before the 
wave motion has died away. I n  the first case the final approach to steady state is 
smooth, in the second it is oscillatory. 

2.4. Overall evolution to steady state 
The results of $32.1-2.3 may be summarized to form an overall picture of the 
development of the flow from initiation to steady state for a particular set of 
parameter values. The six Grashof-number criteria noted above divide the Grashof- 
number space into a number of transient flow regimes, each of which is characterized 
by a different approach to steady state. Some of these differences are slight, and a 
broader classification into three regimes is possible conductive (Gr < c - ~ ) ,  augmented 
conductive or transitional ( ( T - ~  < Gr < ( T - ~ A - ~ ) ,  and convective (Gr > U - ~ A - ~ ) .  The 
first of these regimes is characterized by the complete absence of convective effects, 
and the third by their dominance and an oscillatory approach to steady state. The 
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FIGURE 3. The variation with 12% of the various timescales in their regions of validity for the 
case = 10, A = 0.25. The broken vertical lines represent regime boundaries. 

transitional regime lies between these extremes, its characteristics depending on the 
location of Gr within the regime. 

The remaining parameters define a number of subregimes of the broader classific- 
ation. For > 1, A < 1, two orderings of the Grashof-number criteria are possible, 
depending on the value of uA2. I n  the following it is assumed that r A 2  < 1, giving 

1 >- (T4 1 1 1 1 ->,>,>->- A4 A uA v2A4 r A 2  u2' 

The evolution to steady state in each of the seven regimes is summarized by table 
1 ,  which briefly describes the hierarchy of timescales that divide each regime into 
a number of transient flow subregimes, and by figure 3, which, for particular values 
r = 10, A = 0.25, shows the variation of Gr of the relevant timescales (non- 
dimensionalized by h2v-') in each regime. 

3. Numerical procedures, results and discussion 
To test the validity of the scale analysis and interpretation of $2, numerical 

solutions for the case rr = 10, A = 0.25 have been obtained for various values of Gr, 
the Gr-values being selected to allow access to as many as possible of the regimes. 
8 1 1  computationq were carried out on square, uniformly spaced grids, using the 
algorithm described by Patterson & Imberger (1980), with appropriate modifications 
to the energy equation and boundary conditions. Further discussion of the algorithm 
is not warranted here, except to note that increasing difficulty in converging to a final 
Nusselt number of unity (as required by the insulated-wall boundary conditions) with 
increasing Grashof number severely limited the maximum Grashof numbcr for which 
computations cwuld bc carried out. 

Before differencing, ( 1 )-( 4) were non-dimensionalized according to the scheme 



Unsteady natural convection in a cavity 145 

t* 

I (b)  

. 1.5 x lo+ 

0.9 X lo-’ 
0.6 X lo-’ 

FIGURE 4. The numerical results for run 1, Cr = 0.625: (a )  the variation of‘ N u  with t * ;  (6) the 
steady-state streamlines; (c) the steady-state isotherms. T* has been normalized by  TZ,,, and the 
numerical values in (6) are values of $/v. 

and the transport equations were written in conservative form. I n  terms of the 
non-dimensional variables, the Nusselt number a t  the centreline of the cavity is given 

Nu = - : j : ( r U T * - c )  dY. 

The variation of Xu with non-dimensional time gives an indication of the effect of 
convection as its value deviates from the pure conduction result, evidence of the 
presence of internal-wave activity, and a measure of the progress of the integration. 
When the computed value of Nu differs from unity by less than a prescribed amount 
for a sufficient time, steady state is assumed to have been achieved, after confirmation 

by 

ax X = l lZA 
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1.01 
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0.6- 
Nu 

0 20 40 
7 

40 
1 

60 
t* 

FIQURE 5(u-c).  For caption see facing page. 

by the iteration count. The asymptotic approach to steady state, however, implies 
a large potential error in the numerical estimate of steady-state time. 

The pure conduction solution may be obtained by the usual transform methods 
as 

At steady state, this becomes, in non-dimensional form, 

T* = - 2 ( ; ~ 3 ~ 3 - i ~ 2 ~ 2 + $ ) ,  

which has maximum magnitude of TZax = 0.0833 a t  either endwall. As convection 
becomes important, the maximum non-dimensional temperature is reduced. I n  the 
results given below, the temperatures have been normalized by TZaX. 
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(4 

FIGURE 5 .  The numerical results for run 2 ,  Gr = 62.5: (a )  the variation of N u  with t * ;  ( b ) ,  (c) the 
flow and temperature fields at the peak in (a ) ,  t* = 10; ( d ) ,  ( e )  the flow and temperature fields a t  
steady state. T* has been normalized by TZa,, and the numerical values in ( b )  and (d) are values 
of $/v. Note the change in timescale. 

The computations have been carried out for (T = .lo, A = 0.25, with Gr ranging 
between 0.625 and 6.25 x lo4, traversing all regimes except Gr < (T-* and Gr > ( T ~ A - ~ .  
The region Gr < rp2 was not included as little would be learned by the solution of 
essentially a pure-conduction problem. The region Gr > a4A-* was beyond the limit 
of economical computation and was excluded as the Gr - 6.25 x lo4 case would 
display many of the features of this region. The computations shown in figures 4-6 
were for Gr-values of 0.625, 62.5 and 6.25 x 10'. Other values, representative of the 
remaining regimes, were also used; these showed a transition between the values 
above and the results are not shown. In  each of the figures the variation of Nu with 
t* is shown, indicating the progression to  steady state, the influence of convection 
and the presence or otherwise of internal-wave activity. The flow and temperature 
(normalized by T&.) fields a t  steady state are also shown, and in some cases the fields 
a t  some time before steady state are given as well. 

The first computation (figure 4, Gr = 0.625) lies in the transitional regime and shows 
a monotonic approach to steady state. The steady flow field shows a weak circulation 
which has a minor convective effect on the temperature field, which is dominated by 
conduction. With increasing Cr, this convective influence increases; figure 5 shows 
the results for Gr = 62.5, in the convective regime U - ~ A - ~  < Gr < AA4, close to the 
upper boundary where adjustments at the vertical boundary become important. The 
Nusselt number shows a rapid rise to a value greater than unity, followed by a slow 
decay away to unity, indicating the dominance of convection and the presence of 
heavily damped internal wave activity. The flow and temperature fields a t  the 
maximum Nu-value (t* = 10) are shown in figures 5 ( b ,  c ) ,  and the steady-state fields 
in figures 5 ( d ,  e ) .  Both the velocities and horizontal temperature gradient are less a t  
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Nu 

1.6 
7 

2.4 

i I 

FIGTTRH: 6(a-r). For caption see facing page. 

steady state as a result of the decaying internal wave. The isotherms have gone 
through significant adjustment near the vertical boundaries, an indication that, 
although Gr < AP4,  the vertical-wall adjustments are beginning to have some effect. 
The maximum temperature is reduced to a normalized value of 0.22; evidently 
horizontal conduction is playing a very Iittle role in the heat-transfer process. 

The final computation shown is for Gr = 6.25 x lo4, for which Gr > A-4. Convection 
and adjustments near the vertical boundaries are expected, and internal-wave 



Unsteady natural convection in a cavity 

-0.0 I - -0.02 

149 

J 
25 301 

10 - 
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FIGURE 6 The numerical results from run 3, Qr = 6 25 x lo4 ( a )  the variation of ,Vu with t * ,  ( h ) ,  
(c) the flow and temperature fields a t  the first peak I n  (a) ,  t* = 0 33,  (d ) ,  (r’ the flow and temperature 
firlds a t  steady state (f) the development of the mid-depth vertical-rrlocity and temperature 
profiles in the heated cnd of the cavity a9 functions of time T* has been normalized by T&., and 
the numerical values in ( b )  and (d )  ar r  values of $ / u  The numerical values in (f) arr the values 
of t*  at which the profiles of V and T* are taken 
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activity is likely, and, since Gr is close to the boundary ofthe inertial regime, inertial 
effects will be present. The Nusselt number (figure 6 a )  shows internal wave activity 
of period 0.41 (compared with 0.16, from (24)) decaying to  unity. This mismatch of 
periods indicates that the details of the vertical stratification may be important in 
(24). However, the periods are of the same order. The flow and temperature fields 
a t  the peak Nu-value (figures 6 b ,  c )  and steady state (figures 6d,c )  show evidence of 
inertial intrusions travelling across the cavity on a scale less than h, large temper- 
ature gradients and velocity concentrations near the vertical boundaries, and sig- 
nificant adjustments near these boundaries as steady state is reached. At steady 
state, the core flow is driven almost entirely by diffusion of momentum from the 
velocity concentrations near the vertical walls ; in turn, the velocity concentration 
is generated by the steep temperature gradient. 

The development of the adjustments near the vertical boundaries is better shown 
by figure 6(f) ,  which depicts the vertical velocity and temperature profiles a t  the 
mid-depth of the cavity as a function of x, for the heated half of the cavity, as time 
progresses. This shows that the increasing linear core temperature gradient generates 
a vertical velocity, tending to concentrate near the boundary. By t* = 0.3, diffusion 
of momentum from the concentration has been sufficient to reduce the core gradient, 
and by t* = 0.4, the gradient has become negative, reducing the velocity peak. This 
reversal began a t  t* = 0.33, corresponding to the peak Nu-value. These adjustments 
continue until a t  steady state, t* = 1.8, the core temperature is essentially uniform. 
Near the boundary, the temperature gradient drives a flow which is sufficient to 
achieve thermal equilibrium in the boundary region, as well as, by diffusion of 
momentum, in the core region. 

4. Conclusions 
The results a,bove indicate that convective flows driven by internal buoyancy 

sources and sinks distributed throughout the cavity may be classified as conductive, 
transitional or convective, depending on the value of the Grashof number Gr relative 
to various comhinations of the Prandtl number CT and the aspect ratio A .  This is a 
similar conclusion to that reached in Patterson & Imberger (1980) for the differentially 
heated endwall case. I n  fact, the flows in each region are qualitatively similar in both 
cases, with the low Grashof number (low Rayleigh number for the differentially heated 
endwalls case) flows being characterized by vertical isotherms and a near-linear 
gradient driving a weak circulation, and the high-Grashof-(Rayleigh-)number flows 
being characterized by horizontal isotherms in the core region with sharp temperature 
and velocity gradients near the vertical walls. The mechanisms and scales however 
in the two cases are quite different. 
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